登陆注册
5124

自然数有哪些(0到底是不是自然数)

大财经2023-03-21 18:46:520

6×9=54(本)

当x=5时,最后总人数为2+7×5=37人,符合题意。

得出结论,拆分的原则是:

【二年】

各年级答案

从时针指向4开始,再经过多少分钟时针正好和分针重合?

当x=6时,最后总人数为2+7×6=44人,符合题意。

【六年】

我们先来拿几个数试一下:

代入公式:(盈+亏)÷两次分配的差=份数

△ △ ○ □ △ △ ○ □ △ △ ○ □△ △ ○ □……

120÷(6-0.5)=10又10/11(分)

自然数有哪些 0到底是不是自然数

照这样的顺序画下去。

(2)这30个图形中有多少个○?

按要求填数:

解:设第一站上车的人数为x人,则第二站上车的人数为2x人,第三站上车的人数为4x人。

☆ + 1 = △ - 1

17=3+3+3+3+3+2 3×3×3×3×3×2=486;

【二年】

【五年】

5~9用上面的方法拆分后 把加数乘起来后乘积最大。大家可以试一下,童鞋们肯定找不到更好的拆分方法使乘积更大。

9=3+3+3 3×3×3=27

所以车上最后有30或37或44人。

【五年】

于是,17这样拆分:

答:再经过10又10/11分时针分针正好重合。

【六年】

30≤2+x+2x+4x≤50

时针60分走30度(一个大格),所以每分钟走30÷60=0.5(度)

(1)第30个图形是什么图形吗?

8=3+3+2 3×3×2=18

其他x的取值不符合题意。

☆ + 1 = △ - 1

……

○一共有7×1=7(个)(7组,每组里边一个,余下的2个都是△,没有○)

30÷4=7(组)……2(个)。7组,每组都是△ △ ○ □,还余2个,所以是第二个图形△。

我们把这种问题看成追及问题来解决,4:00的时候,时针在分针的前面4个大格,4×30=120(度),这是追及路程。速度差是每分:6-0.5=5.5(度)

拆分方法和最大乘积

【四年】

从时针指向4开始,再经过多少分钟时针正好和分针重合?

把17分拆成几个自然数的和,使这些自然数的积最大,应怎样分拆?

(2)这30个图形中有多少个○?

△ △ ○ □ △ △ ○ □ △ △ ○ □ △ △ ○ □……

按要求填数:

30≤2+7x≤50

(1)第30个图形是什么图形吗?

拆成尽量多的3,当所给的数不是3的倍数时,可以用两个或一个2来调整。但是千万不要出现1;

某读书小组的同学分一箱书,若每人分4本,则多18本;若每人分6本正好;求这个小组共有多少个同学?这箱书一共有多少本?【四年】

把17分拆成几个自然数的和,使这些自然数的积最大,应怎样分拆?

【一年】317 1~6年级每日一题及答案详解-0106

某读书小组的同学分一箱书,若每人分4本,则多18本;若每人分6本正好;求这个小组共有多少个同学?这箱书一共有多少本?

这是一道盈亏问题,蓝字部分,第一种分法多了(盈)18本,红色部分第二种分法每人6本正好,相当于每人6本的时候少(亏)0本;依然可以利用公式解题:

6=3+3 3×3=9

当x=4时,最后总人数为2+7×4=30人,符合题意。

(18+0)÷(6-4)=9(人)或

一辆汽车,开车时车上只有一个司机和一个乘客,然后在三个车站上有人上车,直到终点无人下车,在第一个车站以后的每个站,上车的人数是前一个车站上车人数的两倍,到达终点时,车上的人数在30和50之间,车上有多少人?

重复一遍:尽量多的3,最多两个2,不能出现1。

这些图形是有规律地出现的,每四个图形一组,每组都是△ △ ○ □,于是我们用除法解决这个问题:

5=3+2 3×2=6

18÷(6-4)=9(人)

【三年】

7=3+2+2 3×2×2=12

自然数有哪些 0到底是不是自然数

【一年】

△ △ ○ □ △ △ ○ □ △ △ ○ □ △ △ ○ □……

照这样的顺序画下去。

一辆汽车,开车时车上只有一个司机和一个乘客,然后在三个车站上有人上车,直到终点无人下车,在第一个车站以后的每个站,上车的人数是前一个车站上车人数的两倍,到达终点时,车上的人数在30和50之间,车上有多少人?

分针走一圈是360度,要60分,所以每分钟走360÷60=6(度)。

如果,☆=2,△ = (4)

【三年】

0000
评论列表
共(0)条
热点
关注
推荐